Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Pathogens ; 12(9)2023 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-37764990

RÉSUMÉ

Dengue fever has been a public health problem in the Caribbean region since 1981, when it first reappeared in Cuba. In 1989, it was reported in Martinique and Guadeloupe (two French islands 200 km apart); since then, DENV has caused several epidemics locally. In 2019-2021, DENV-1, DENV-2, and DENV-3 were detected. Serotype distribution was differentiated, with DENV-2 and DENV-3 predominating in Guadeloupe and Martinique, respectively. Complete genome sequencing was carried out on 32 specimens, and phylogenic analysis identified the circulation of genotype V for DENV-1, cosmopolitan genotype for DENV-2, and genotype III for DENV-3. However, two distinct circulating groups were identified for DENV-1 and DENV-3, suggesting independent introductions. Overall, despite the context of the COVID-19 pandemic and the associated travel restrictions, these results confirm the active circulation of DENV and specific epidemiological features on each of the two islands. Such differences may be linked to the founder effect of the various introduction events, and to local factors such as the population immunity and the transmission capacity of the vectors. Further genomic and epidemiological characterization of DENV strains remains essential to understand how dengue spreads in each specific geographical context and to prevent future epidemics.

2.
Infect Genet Evol ; 70: 131-139, 2019 06.
Article de Anglais | MEDLINE | ID: mdl-30790700

RÉSUMÉ

Entomopathogenic nematodes (EPNs) form specific mutualistic associations with bioluminescent enterobacteria. In Heterorhabditidis indica, Ochrobactrum spp. was identified beside the symbiont Photorhabdus luminescens but its involvement in the symbiotic association in the EPNs remains unclear. This study describe the population structure and the diversity in Ochrobactrum natural populations isolated from EPNs in the Caribbean basin in order to question the existence of EPN-specialized clones and to gain a better insight into Ochrobactrum-EPNs relationships. EPN-associated Ochrobactrum and Photorhabdus strains were characterized by multi-locus sequence typing, Pulsed-Field Gel Electrophoresis fingerprinting and phenotypic traits. Population study showed the absence of EPN-specialized clones in O. intermedium and O. anthropi but suggested the success of some particular lineages. A low level of genetic and genomic diversification of Ochrobactrum isolated from the natural population of Caribbean nematodes was observed comparatively to the diversity of human-associated Ochrobactrum strains. Correspondences between Ochrobactrum and P. luminescens PFGE clusters have been observed, particularly in the case of nematodes from Dominican Republic and Puerto Rico. O. intermedium and O. anthropi associated to EPNs formed less biofilm than human-associated strains. These results evoke interactions between Ochrobactrum and the EPN symbiotic system rather than transient contamination. The main hypothesis to investigate is a toxic/antitoxic relationship because of the ability of Ochrobactrum to resist to antimicrobial and toxic compounds produced by Photorhabdus.


Sujet(s)
Nematoda/microbiologie , Ochrobactrum/génétique , Animaux , Caraïbe/épidémiologie , République dominicaine/épidémiologie , Génétique des populations , Humains , Typage par séquençage multilocus , Photorhabdus , Phylogenèse , Porto Rico/épidémiologie , Symbiose
3.
FEMS Immunol Med Microbiol ; 64(1): 66-73, 2012 Feb.
Article de Anglais | MEDLINE | ID: mdl-22098128

RÉSUMÉ

Ehrlichia ruminantium (ER), the causative agent of heartwater on ruminants, is an obligate intracellular bacterium transmitted by ticks of the genus Amblyomma. Previous studies have shown that early stages of development may be critical for Ehrlichia pathogenicity. To gain insights into the biology of intracellular ER, we determined the genome-wide transcriptional profile of ER replicating inside bovine aortic endothelial cells using DNA microarrays. At intermediate and late stages of infection (reticulate and elementary bodies, respectively), a total of 54 genes were differentially expressed. Among them, we measured by q-RTPCR the overexpression of 11 of 14 genes. A number of genes involved in metabolism, nutrient exchange, and defense mechanisms, including those involved in resistance to oxidative stress, were significantly induced in ER reticulate bodies. This is consistent with the oxidative stress condition and nutrient starvation that seem to occur in Ehrlichia-containing vacuoles. During the lysis stage of development, when ER is infectious, we showed the overexpression of a transcription factor, dksA, which is also known to induce virulence in other pathogens such as Salmonella typhimurium. Our results suggest a possible role of these genes in promoting ER development and pathogenicity.


Sujet(s)
Ehrlichia ruminantium/génétique , Transcriptome , Animaux , Bovins , Cellules cultivées , Ehrlichia ruminantium/croissance et développement , Cellules endothéliales/microbiologie , Analyse sur microréseau , Réaction de polymérisation en chaine en temps réel , RT-PCR
4.
Vet Parasitol ; 167(2-4): 187-95, 2010 Feb 10.
Article de Anglais | MEDLINE | ID: mdl-19819629

RÉSUMÉ

Understanding bacterial genetic diversity is crucial to comprehend pathogenesis. Ehrlichia ruminantium (E. ruminantium), a tick-transmitted intracellular bacterial pathogen, causes heartwater disease in ruminants. This model rickettsia, whose genome has been recently sequenced, is restricted to neutrophils and reticulo-endothelial cells of its mammalian host and to the midgut and salivary glands of its vector tick. E. ruminantium harbors a multigene family encoding for 16 outer membrane proteins including MAP1, a major antigenic protein. All the 16 map paralogs are expressed in bovine endothelial cells and some are specifically translated in the tick or in the mammalian host. In this study, we carried out phylogenetic analyses of E. ruminantium using sequences of 6 MAP proteins, MAP1, MAP1-2, MAP1-6, MAP1-5, MAP1+1 and MAP1-14, localized either in the center or at the borders of the map genes cluster. We show that (i) map1 gene is a good tool to characterize the genetic diversity among Africa, Caribbean islands and Madagascar strains including new emerging isolates of E. ruminantium; (ii) the different map paralogs define different genotypes showing divergent evolution; (iii) there is no correlation between all MAP genotypes and the geographic origins of the strains; (iv) The genetic diversity revealed by MAP proteins is conserved whatever is the scale of strains sampling (village, region, continent) and thus was not related to the different timing of strains introduction, i.e. continuous introduction of strains versus punctual introduction (Africa versus Caribbean islands). These results provide therefore a significant advance towards the management of E. ruminantium diversity. The differential evolution of these paralogs suggests specific roles of these proteins in host-vector-pathogen interactions that could be crucial for developing broad-spectrum vaccines.


Sujet(s)
Protéines de la membrane externe bactérienne/métabolisme , Ehrlichia ruminantium/génétique , Variation génétique , Protéines de la membrane externe bactérienne/génétique , Régulation de l'expression des gènes bactériens/physiologie , Famille multigénique , Phylogenèse
5.
BMC Mol Biol ; 10: 111, 2009 Dec 24.
Article de Anglais | MEDLINE | ID: mdl-20034374

RÉSUMÉ

BACKGROUND: Whole genome transcriptomic analysis is a powerful approach to elucidate the molecular mechanisms controlling the pathogenesis of obligate intracellular bacteria. However, the major hurdle resides in the low quantity of prokaryotic mRNAs extracted from host cells. Our model Ehrlichia ruminantium (ER), the causative agent of heartwater, is transmitted by tick Amblyomma variegatum. This bacterium affects wild and domestic ruminants and is present in Sub-Saharan Africa and the Caribbean islands. Because of its strictly intracellular location, which constitutes a limitation for its extensive study, the molecular mechanisms involved in its pathogenicity are still poorly understood. RESULTS: We successfully adapted the SCOTS method (Selective Capture of Transcribed Sequences) on the model Rickettsiales ER to capture mRNAs. Southern Blots and RT-PCR revealed an enrichment of ER's cDNAs and a diminution of ribosomal contaminants after three rounds of capture. qRT-PCR and whole-genome ER microarrays hybridizations demonstrated that SCOTS method introduced only a limited bias on gene expression. Indeed, we confirmed the differential gene expression between poorly and highly expressed genes before and after SCOTS captures. The comparative gene expression obtained from ER microarrays data, on samples before and after SCOTS at 96 hpi was significantly correlated (R2 = 0.7). Moreover, SCOTS method is crucial for microarrays analysis of ER, especially for early time points post-infection. There was low detection of transcripts for untreated samples whereas 24% and 70.7% were revealed for SCOTS samples at 24 and 96 hpi respectively. CONCLUSIONS: We conclude that this SCOTS method has a key importance for the transcriptomic analysis of ER and can be potentially used for other Rickettsiales. This study constitutes the first step for further gene expression analyses that will lead to a better understanding of both ER pathogenicity and the adaptation of obligate intracellular bacteria to their environment.


Sujet(s)
Ehrlichia ruminantium/composition chimique , Analyse de profil d'expression de gènes/méthodes , Analyse de séquence d'ADN/méthodes , Transcription génétique , Animaux , Bovins , Cellules cultivées , ADN bactérien/génétique , ADN complémentaire/génétique , Ehrlichia ruminantium/génétique , Capra
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...